» » » » Артур Уиггинс - Пять нерешенных проблем науки

Артур Уиггинс - Пять нерешенных проблем науки

На нашем литературном портале можно бесплатно читать книгу Артур Уиггинс - Пять нерешенных проблем науки, Артур Уиггинс . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bookplaneta.ru.
Артур Уиггинс - Пять нерешенных проблем науки
Название: Пять нерешенных проблем науки
ISBN: -
Год: -
Дата добавления: 10 февраль 2019
Количество просмотров: 127
Читать онлайн

Пять нерешенных проблем науки читать книгу онлайн

Пять нерешенных проблем науки - читать бесплатно онлайн , автор Артур Уиггинс
Американские ученые Артур Уиггинс и Чарлз Уинн просто, подробно и с юмором рассказывают о крупнейших проблемах науки, над решением которых бьются ученые всего мира.Астрономия. Почему Вселенная расширяется, а скорость расширения постоянно возрастает?Физика. Почему одни частицы обладают массой, а другие — нет?Химия. Какие химические реакции подтолкнули атомы к образованию первых живых существ?Биология. Каково полное устройство и предназначение протеома?Геология. Возможен ли точный долговременный прогноз погоды?Авторы знакомят с событиями, поставившими данные проблемы, обсуждают существующие теории, среди которых теории струн, хаоса, генома человека и укладки белков, дают возможность читателям принять участие в размышлениях над предложенными идеями.Книга рассказывает о крупнейших проблемах астрономии, физики, химии, биологии и геологии, над которыми сейчас работают ученые. Авторы рассматривают открытия, приведшие к этим проблемам, знакомят с работой по их решению, обсуждают новые теории, в том числе теории струн, хаоса, генома человека и укладки белков. Для широкого круга читателей.Рисунки Сидни Харриса
Перейти на страницу:

Оказавшуюся ложной гипотезу необходимо каким — то образом пересмотреть, т. е. слегка изменить, основательно переработать или же вовсе отбросить. Крайне трудно бывает решить, какие изменения здесь уместны. Пересмотренным гипотезам предстоит снова проделать тот же путь, и либо они устоят, либо от них откажутся в ходе дальнейших сопоставлений предсказания с опытом.

Другая сторона научного метода, не позволяющая сбиться с пути, — воспроизведение. Любой наблюдатель с соответствующей выучкой и подобающим оснащением должен суметь повторить опыты или предсказания и получить сравнимые результаты. Иначе говоря, науке свойственны постоянные перепроверки. Например, коллектив ученых из Национальной лаборатории им. Лоуренса Калифорнийского университета в Беркли[2] пытался получить новый химический элемент, обстреливая свинцовую мишень мощным лучом ионов криптона и затем изучая полученные вещества. В 1999 году ученые объявили о синтезе элемента с порядковым номером 118.

Синтез нового элемента — это всегда важное событие. В данном случае его синтез мог подтвердить бытовавшие представления о стабильности тяжелых элементов. Однако ученые других лабораторий Общества по изучению тяжелых ионов (Дармштадт, Германия), Большого государственного ускорителя тяжелых ионов Кайенского университета (Франция) и Лаборатория атомной физики Физико — химического института Рикэн (Япония) — не смогли повторить синтез элемента 118. Расширенный коллектив лаборатории в Беркли повторил опыт, но ему также не удалось воспроизвести полученные ранее результаты. В Беркли перепроверили исходные экспериментальные данные посредством программы с видоизмененным кодом и не сумели подтвердить наличия элемента 118. Пришлось отзывать свою заявку. Данный случай свидетельствует, что научный поиск бесконечен.

Порой наряду с опытами перепроверяются и гипотезы. В феврале 2001 года Брукхэйвенская национальная лаборатория в Нью-Йорке сообщила об опыте, в котором магнитный момент мюона (подобно электрону отрицательно заряженной частицы, но значительно более тяжелой) слегка превышает величину, предопределенную стандартной моделью физики элементарных частиц (подробнее об этой модели см. гл. 2). А поскольку предположения стандартной модели о многих иных свойствах частиц очень хорошо согласовывались с опытными данными, такое расхождение по поводу величины магнитного момента мюона разрушало основу стандартной модели.

Предсказание магнитного момента у мюона стало следствием сложных и долгих расчетов, независимо проведенных учеными в Японии и Нью-Йорке в 1995 году. В ноябре 2001 года эти расчеты повторили французские физики, которые обнаружили ошибочный отрицательный знак у одного из членов уравнения и разместили свои результаты в Интернете. В итоге Брукхэйвенская группа перепроверила собственные вычисления, признала ошибку и опубликовала исправленные результаты. В итоге удалось сократить расхождение между предсказанием и опытными данными. Стандартной модели вновь предстоит выдержать испытания, которые ей готовит непрекращающийся научный поиск.

Научный метод в действии

Рассмотрим шаг за шагом классический пример работы научного метода.

Наблюдение

Наблюдение. Дж. Дж. Томсон, руководитель Кавендишской лаборатории (1884–1919) в Англии, изучал поведение светового луча в электронно-лучевой трубке (прообразе современной приемной телевизионной ЭЛТ). Поскольку луч: 1) отклонялся в сторону положительно заряженных электрических пластин и 2) при ударе о них вызывал вспышки света, выходило, что он состоял из отрицательно заряженных частиц — электронов, как назвал их ирландский физик XIX века Джордж Фицджеральд в своих замечаниях по поводу опыта Томсона. (Название электрон в качестве единицы электрического заряда предложил другой ирландский физик, Джордж Стони.)

Гипотеза

Гипотеза. Поскольку атомы не обладают зарядом (нейтральны), а Томсон открыл внутри них отрицательно заряженные частицы, он заключил, что атом должен иметь и положительный заряд. В 1903 году Томсон создал теорию, согласно которой положительный заряд «размазан» по всему атому, а отрицательно заряженные электроны в виде вкраплений находятся посреди положительно заряженного вещества. Такая картина напоминала традиционное британское блюдо, поэтому получила название «томсоновская модель атома в виде пудинга с изюмом».

Предсказание

Предсказание. Эрнст Резерфорд был специалистом по положительно заряженным частицам, именуемым α-частицами. В начале XX века он предсказал, что обстрел этими частицами атомов, состоящих из редкого и «размазанного» положительного заряда, согласно томсоновской модели «пудинга с изюмом» будет напоминать броски бильярдными шарами в туман. Большая часть шаров пройдет напрямую, и лишь их толика отклонится на крайне малую величину.

Опыт

Опыт. В 1909 году Ганс Гейгер и Эрнест Марсден стали обстреливать α-частицами тонкую золотую фольгу. Результаты оказались совершенно отличными от ожидаемых. Некоторые α-частицы отклонялись на большие величины, а отдельные даже отскакивали обратно. Резерфорд заметил, что это «столь же неправдоподобно, как если бы вы выстрелили пятнадцатифунтовым снарядом в папиросную бумагу, а снаряд отскочил бы обратно и убил вас самих».

Повтор

Повтор. На смену томсоновской модели атома пришла резерфордовская модель по образцу Солнечной системы, где положительный заряд был сосредоточен в сравнительно крошечном ядре посредине атома, а электроны (подобно планетам) обращались по круговым орбитам вокруг ядра (подобного Солнцу). В XX веке, после очередных предсказаний и опытов резерфордовскую модель атома в виде Солнечной системы сменили иные модели. Когда опытные данные не согласовывались с предсказаниями существовавшей гипотезы, приходилось пересматривать гипотезу.

Так толкование открытых Исааком Ньютоном законов механики и классических гипотез Джеймса Клерка Максвелла о природе электричества и магнетизма привело к заманчивому предположению об абсолютном характере пространства и времени. Теория относительности Эйнштейна заменила эти удобные абсолютные величины противоречащими интуиции и философски неблагонадежными относительными величинами. Основная причина, вынудившая признать существование относительности, заключалась в соответствии предсказаний данной теории опытным данным.

Несмотря на распространенность того или иного представления, известность сторонников какой-либо теории, непривлекательность новой теории, политические взгляды авторов идей или трудность их понимания, незыблемым остается одно: верховенство данных опыта.

Сложности

Представленный здесь научный метод — рациональная реконструкция функционирования науки в действительности. Подобная идеализация, естественно, отличается от происходящего на самом деле, например, при большом числе участников, когда этапы разделяются длительными промежутками времени. И все же у нас есть возможность многое увидеть.

Здесь необходимо учитывать ряд сложностей. Прежде всего, наука выдвигает несколько философских предположений, с которыми не согласны некоторые философы. Наука допускает существование объективной реальности, не зависящей от наблюдателя. Иначе без такой объективности одни и те же наблюдения и опыты, повторенные в различных лабораториях, могли бы разниться, и тогда исследователям невозможно было бы прийти к согласию. Далее, наука полагает, что Вселенной управляют некие незыблемые законы, и человек в состоянии постичь эти законы. Если управляющие Вселенной законы лишены определенности или мы не в состоянии постичь их, все усилия науки по выдвижению любых гипотез окажутся тщетными. Но поскольку наше понимание этих законов, похоже, углубляется, а основанные на них предсказания находят подтверждения в опытах, такие предположения выглядят вполне разумными.

Научные гипотезы строятся в связи с событиями, происходящими на протяжении длительного промежутка времени, в том числе с минувшими, которые нельзя проверить опытом. Обычно такую трудность обходят, выдвигая перекрестные гипотезы из различных отраслей знаний в поисках взаимного согласия. Например, оцениваемый в более чем 4 млрд. лет возраст Земли подтверждается астрономическими вычислениями содержания гелия в недрах Солнца, геологическими измерениями тектоники плит и биологическими наблюдениями за ростом коралловых отложений.

При объяснении определенного события — особенно при отсутствии опытных данных для некоторых явлений (например, о далеком прошлом, у которого не было летописцев, или о недоступных уголках Вселенной) — может выдвигаться сразу несколько гипотез. Щекотливое положение, когда много гипотез невозможно экспериментально подтвердить, разрешается на основе принципа научной бережливости [лат. principium parsimoniae], именуемого бритвой Оккама.

Перейти на страницу:
Комментариев (0)