» » » » Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия

Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия

На нашем литературном портале можно бесплатно читать книгу Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия, Михаил Гук . Жанр: Компьютерное "железо". Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bookplaneta.ru.
Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия
Название: Аппаратные интерфейсы ПК. Энциклопедия
ISBN: -
Год: -
Дата добавления: 3 июль 2019
Количество просмотров: 285
Читать онлайн

Аппаратные интерфейсы ПК. Энциклопедия читать книгу онлайн

Аппаратные интерфейсы ПК. Энциклопедия - читать бесплатно онлайн , автор Михаил Гук
Книга посвящена аппаратным интерфейсам, использующимся в современных персональных компьютерах и окружающих их устройствах. В ней подробно рассмотрены универсальные внешние интерфейсы, специализированные интерфейсы периферийных устройств, интерфейсы устройств хранения данных, электронной памяти, шины расширения, аудио и видеоинтерфейсы, беспроводные интерфейсы, коммуникационные интерфейсы, вспомогательные последовательные интерфейсы. Сведения по интерфейсам включают состав, описание сигналов и их расположение на разъемах, временные диаграммы, регистровые модели интерфейсных адаптеров, способы использования в самостоятельно разрабатываемых устройствах. Книга адресована широкому кругу специалистов, связанных с эксплуатацией ПК, а также разработчикам аппаратных средств компьютеризированной аппаратуры и их программной поддержки.
Перейти на страницу:

♦ CR.5 — Direction — бит управления направлением передачи (только для портов PS/2, см. ниже). Запись единицы переводит порт данных в режим ввода. При чтении состояние бита не определено.

♦ CR.4 — AckINTEN (Ack Interrupt Enable) — единичное значение разрешает прерывание по спаду сигнала на линии Ack# — сигнал запроса следующего байта.

♦ CR.3 — Select In — единичное значение бита соответствует низкому уровню на выходе Select In# (17) — сигналу, разрешающему работу принтера по интерфейсу Centronics.

♦ CR.2 — Init — нулевое значение бита соответствует низкому уровню на выходе Init# (16) — сигнал аппаратного сброса принтера.

♦ CR.1 — Auto LF — единичное значение бита соответствует низкому уровню на выходе Auto LF# (14) — сигналу на автоматический перевод строки (LF — Line Feed) по приему байта возврата каретки (CR). Иногда сигнал и бит называют AutoFD или AutoFDXT.

♦ CR.0 — Strobe — единичное значение бита соответствует низкому уровню на выходе Strobe# (1) — сигналу стробирования выходных данных.

Запрос аппаратного прерывания (обычно IRQ7 или IRQ5) вырабатывается по отрицательному перепаду сигнала на выводе 10 разъема интерфейса (Ack#) при установке CR.4=1. Во избежание ложных прерываний контакт 10 соединен резистором с шиной +5 В. Прерывание вырабатывается, когда принтер подтверждает прием предыдущего байта. Как уже было сказано, BIOS это прерывание не использует и не обслуживает.

Перечислим шаги процедуры вывода байта по интерфейсу Centronics с указанием требуемого количества шинных операций процессора.

1. Вывод байта в регистр данных (1 цикл IOWR#).

2. Ввод из регистра состояния и проверка готовности устройства (бит SR.7 — сигнал Busy). Этот шаг зацикливается до получения готовности или до срабатывания программного тайм-аута (минимум 1 цикл IORD#).

3. По получению готовности выводом в регистр управления устанавливается строб данных, а следующим выводом строб снимается. Обычно, чтобы переключить только один бит (строб), регистр управления предварительно считывается, что к двум циклам IOWR# добавляет еще один цикл IORD#.

Видно, что для вывода одного байта требуется 4–5 операций ввода-вывода с регистрами порта (в лучшем случае, когда готовность обнаружена по первому чтению регистра состояния). Отсюда вытекает главный недостаток вывода через стандартный порт — невысокая скорость обмена при значительной загрузке процессора. Порт удается разогнать до скоростей 100–150 Кбайт/с при полной загрузке процессора, что недостаточно для печати на лазерном принтере. Другой недостаток функциональный — сложность использования в качестве порта ввода.

Стандартный порт асимметричен — при наличии 12 линий (и бит), нормально работающих на вывод, на ввод работает только 5 линий состояния. Если необходима симметричная двунаправленная связь, на всех стандартных портах работоспособен режим полубайтного обмена — Nibble Mode. В этом режиме, называемом также Hewlett Packard Bi-tronics, одновременно принимаются 4 бита данных, пятая линия используется для квитирования. Таким образом, каждый байт передается за два цикла, а каждый цикл требует по крайней мере 5 операций ввода-вывода.

Схемотехника выходных буферов данных LPT-портов отличается большим разнообразием. На многих старых моделях адаптеров SPP-порт данных можно использовать и для организации ввода. Если в порт данных записать байт с единицами во всех разрядах, а на выходные линии интерфейса через микросхемы с выходом типа «открытый коллектор» подать какой-либо код (или соединить ключами какие-то линии со схемной землей), то этот код может быть считан из того же регистра данных. Однако выходным цепям передатчика информации придется «бороться» с выходным током логической единицы выходных буферов адаптера. Схемотехника ТТЛ такие решения не запрещает, но если внешнее устройство выполнено на микросхемах КМОП, их мощности может не хватить для «победы» в этом шинном конфликте. Однако современные адаптеры часто имеют в выходной цепи согласующий резистор с сопротивлением до 50 Ом. Выходной ток короткого замыкания выхода на землю обычно не превышает 30 мА. Простой расчет показывает, что даже в случае короткого замыкания контакта разъема на землю при выводе «единицы» на этом резисторе падает напряжение 1,5 В, что входной схемой приемника будет воспринято как «единица». Поэтому нельзя полагать, что такой способ ввода будет работать на всех компьютерах. На некоторых старых адаптерах портов выходной буфер отключается перемычкой на плате. Тогда порт превращается в обыкновенный порт ввода.

1.2. Расширения параллельного порта

Недостатки стандартного порта частично устраняли новые типы портов, появившиеся в компьютерах PS/2.

Двунаправленный порт 1 (Туре 1 parallel port) — интерфейс, введенный в PS/2. Такой порт кроме стандартного режима может работать в режиме ввода или двунаправленном режиме. Протокол обмена формируется программно, а для указания направления передачи в регистр управления порта введен специальный бит CR.5: 0 — буфер данных работает на вывод, 1 — на ввод. Не путайте этот порт, называемый также enhanced bi-directional, с EPP. Данный тип порта «прижился» и в обычных компьютерах, в CMOS Setup он может называться PS/2 или Bi-Di.

Порт с прямым доступом к памяти (Туре 3 DMA parallel port) применялся в PS/2 моделей 57, 90, 95. Был введен для повышения пропускной способности и разгрузки процессора при выводе на принтер. Программе, работающей с портом, требовалось только задать в памяти блок данных, подлежащих выводу, а затем вывод по протоколу Centronics производился без участия процессора.

Позже появились другие адаптеры LPT-портов, реализующие протокол обмена Centronics аппаратно, — Fast Centronics. Некоторые из них использовали FIFO-буфер данных — Parallel Port FIFO Mode. He будучи стандартизованными, такие порты разных производителей требовали наличия собственных специальных драйверов. Программы, использующие прямое управление регистрами стандартных портов, не могли задействовать их дополнительные возможности. Такие порты часто входили в состав мультикарт VLB. Существуют их варианты с шиной ISA, а также встроенные в системную плату.

1.3. Стандарт IEEE 1284

Стандарт на параллельный интерфейс IEEE 1284, принятый в 1994 году, описывает порты SPP, EPP и ECP. Стандарт определяет 5 режимов обмена данными, метод согласования режима, физический и электрический интерфейсы. Согласно IEEE 1284, возможны следующие режимы обмена данными через параллельный порт:

♦ Режим совместимости (Compatibility Mode) — однонаправленный (вывод) по протоколу Centronics. Этот режим соответствует SPP-порту.

♦ Полубайтный режим (Nibble Mode) — ввод байта в два цикла (по 4 бита), используя для приема линии состояния. Этот режим обмена подходит для любых адаптеров, поскольку задействует только возможности стандартного порта.

♦ Байтный режим (Byte Mode) — ввод байта целиком, используя для приема линии данных. Этот режим работает только на портах, допускающих чтение выходных данных (Bi-Directional или PS/2 Туре 1, см. выше).

♦ Режим EPP (EPP Mode) — двунаправленный обмен данными (EPP означает Enhanced Parallel Port). Управляющие сигналы интерфейса генерируются аппаратно во время цикла обращения к порту. Эффективен при работе с устройствами внешней памяти и адаптерами локальных сетей.

♦ Режим ECP (ECP Mode) — двунаправленный обмен данными с возможностью аппаратного сжатия данных по методу RLE (Run Length Encoding) и использования FIFO-буферов и DMA (ECP означает Extended Capability Port). Управляющие сигналы интерфейса генерируются аппаратно. Эффективен для принтеров и сканеров (здесь может использоваться сжатие) и различных устройств блочного обмена.

Стандарт определяет способ, по которому ПО может определить режим, доступный и хосту (PC), и периферийному устройству (или присоединенному второму компьютеру). Режимы нестандартных портов, реализующих протокол обмена Centronics аппаратно (Fast Centronics, Parallel Port FIFO Mode), могут и не являться режимами IEEE 1284, несмотря на наличие в них черт EPP и ECP.

В компьютерах с LPT-портом на системной плате режим — SPP, EPP, ECP или их комбинация — задается в BIOS Setup. Режим совместимости полностью соответствует SPP-порту. Остальные режимы подробно рассмотрены ниже.

При описании режимов обмена фигурируют следующие понятия:

♦ хост — компьютер, обладающий параллельным портом;

♦ ПУ — периферийное устройство, подключаемое к этому порту;

Перейти на страницу:
Комментариев (0)